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Abstract 
 
This report deals with an overview of the behavioural 
theory based on the ‘ Behaviors - an alternative approach 
to systems and control’ presented by Paula Rocha in the 
back to basics seminar in the University of Porto [13]. 
This report represents the topic/area of research, the main 
research questions, research challenges, main 
methodologies and the state of the art on the research on 
that topic presented in [13]. In this report, we extensively 
study the origin of behavioural theory and its scopes in the 
field of systems and control. We also investigate the recent 
works in this area. 
 
1. Introduction 

 
In the recent years, behavioural theory plays a dominating 
role in the system and control which is now a very 
essential tool in the most of the engineering devices. The 
historical perspectives of control theory is more than 300 
years older [6], the systematic progress and tremendous 
developments in this field occurred since fifty years ago 
which is now appeared as an independent field of research 
in system and control. The concept of optimal control 
came to light more than three century ago after the 
publication of Johann Bernouli’s solution of the 
brachystochrone problem in 1697 [16]. Johann Bernouli 
had posed an open challenge to his contemporaries to 
solve the brachystochrone problem in 1696. Though the 
problem was solved by Newton and Bernouli 
independently, Bernouli was the first who articulated the 
principle of optimality [1]. Later on, various optimality 
principles were formulated by Pierre de Fermat (1601-
1665) (in optics), Carl Friedrich Gauss (1777-1855), Jean 
d’Alembert (1717-1783), Pierre de Maupertuis (1698-
1759), Euler, Lagrange and Hamilton, and Albert Einstein 
(1879-1955) (in mechanics). In 1957 Richard Bellman 
formulated the dynamic programming principle to the 
optimal control of discrete-time systems [2], and in 1958 
Lev Pontryagin developed the maximum  

 
 
Fig. 1.1 The concept of the feedback loop to control the dynamic 
behavior of the system: this is negative feedback, because the 
sensed value is subtracted from the desired value to create the 
error signal which is amplified by the controller. 
 
principle for solving nonlinear optimal control problems 
[10]. Both these optimality principles characterize the 
optimal control by means of a feedback law. The main 
idea of Bellman was to introduce the value function (the 
Bellman function) which satisfies the Hamilton-Jacobi 
equation. On the other hand, the Pontryagin maximum 
principle is based on maximization of the Hamiltonian 
associated to the system by means of the adjoint state 
equation. 
 
In the 1960s, control was considered an electrical 
engineering subject, even though many applications of 
control involved mechanical machines or chemical 
processes. This could in part be explained by the fact that 
controllers were often implemented as electrical devices. 
But the mathematical methods used had a lot to do with it 
also as mentioned in [5]. 
 
The prevailing view of a dynamical system at that time in 
electrical engineering was input/output and frequency-
domain based. Transfer functions were believed to be the 
way to characterize a system. Starting with Heaviside, 
symbolic calculus had been shown to be an effective tool 
for linear time-invariant dynamical systems. Under the 
influence of circuit theory, it had become evident that 
these methods allowed to analyze complex systems, by 
combining series, parallel, and feedback interconnections. 
The spirit of Heaviside’s symbolic calculus was to be able 
to think of a differential operator or a delay as a formal 
indeterminate for which a differential operator or a delay 
can be substituted. Unfortunately, analysts had squeezed 
this marvelous idea in the mathematical rigor of Laplace 
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transforms, using complex functions, with domains of 
convergence and other cumbersome but largely irrelevant 
mathematical traps.  
 
Electrical engineers felt more comfortable with a view of a 
system as a frequency transformer than with any of the 
equivalent time-domain descriptions. The term filter, 
referring to the fact that a system passes some frequencies 
more easily that others, was synonymous for system. This 
view was completely prevailing in control, even more so 
than in the neighboring areas. In circuit theory there were, 
after all, many nonlinear devices. Frequency-domain 
analysis was not especially useful when thinking about 
Maxwell’s equations, and information theory started from 
an altogether different set of principles. Computers were 
just around the corner, but they were viewed as calculating 
devices. The black-box approach was viewed as ideal for 
control. Transfer functions, applied almost uniquely to 
continuous- time single-input/single-output systems, was 
the mathematical language of control. A differential 

equation as 
d d

p y q u
dt dt
   =   
   

 with p and q real 

polynomials, was immediately transformed to a transfer 
function. 
 

2. The Behavioural Approach 
 
In the present century, the pioneer in the behavioural 
systems theory is J. C  Willems. He has introduced the 
concept of behavioural systems theory in ([7], [8]). 
 

 
Fig. 2.1:  J. C  Willems: Pioneer archetype of the behavioural 
theory. 
 
 
In [6], an extensive discussion on the modelling, analysis 
and control of linear time-invariant systems are presented. 
In this book, Willems showed that the two systems of 
differential equations are equivalent in the sense that they 
define the same behaviour. In [4], the behavioral approach 
is classified on the basis of the following premises. 

 
►  A mathematical model is a subset of a set of a priori 
possibilities. This subset is the behavior of the model. For 
a dynamical system, the behavior consists of the time 
trajectories that the model declares possible. 
 
►  The behavior is often given as a set of solutions of 
equations. Differential and difference equations are an 
effective, but highly nonunique, way of specifying the 
behaviour of a dynamical system.  
 
►  The behavior is the central concept in modeling. 
Equivalence of models, properties of models, model 
representations, and system identification must refer to the 
behavior.  
 

► Both first principles models and models of 
interconnected systems usually contain latent variables in 
addition to the manifest variables that the model aims at. 
Elimination of latent variables compactifies the behavioral 
equations. For linear time-invariant differential systems, 
complete elimination of latent variables is possible.  
 
►  Physical systems are usually not endowed with a signal 
flow graph. Input/output models of physical systems are 
appropriate only in some special situations.  
 
►  Interconnected systems can be modelled using tearing, 
zooming, and linking. The interconnection architecture can 
be formalized as a graph with leaves. The nodes of the 
graph correspond to the subsystems, the edges correspond 
to the connected terminals, and the leaves correspond to 
terminals by which the interconnected system interacts 
with its environment. Interconnection of physical systems 
means variable sharing. Output-to-input assignment is 
often an unnecessary, inconvenient, and limiting way of 
viewing physical interconnections. 
 
► System-theoretic concepts such as controllability and 
observability are simpler to define and more general in the 
behavioral setting than in the state-space setting. 
Controllability becomes a genuine property of a dynamical 
system rather than of just a state representation. 
 
►  Control means restricting the behavior of a plant by 
interconnection with a controller. Control by input 
selection, that is, open-loop control, and by feedback, that 
is, closed-loop control, are special cases. 
 
► Linear time-invariant differential systems (including the 
special case of differential-algebraic systems) are in one-
to-one correspondence with R[ξ] sub-modules. This 
correspondence provides the ability to translate every 
property of a linear time-invariant differential behaviour 
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into a property of the associated sub-module. Since these 
R[ξ] sub-modules are finitely generated, computer algebra- 
based algorithms can be used to analyze the system 
properties. 
 
► For linear time-invariant differential systems, 
controllability is equivalent to the existence of an image 
representation, as well as to the case that the 
corresponding R[ξ ] module is closed. Controllable linear 
time-invariant differential systems are in one-to-one 
correspondence with R(ξ )-subspaces. 
 
►  One-to-one correspondence of linear time-invariant 
systems with submodules, elimination of latent variables, 
and equivalence of controllability with the existence of an 
image representation are also valid for systems defined by 
constant-coefficient linear partial differential equations. 
The following figures gives a clear picture of 
interconnections. 
 

 
 
Fig. 2.2 Plant 
 

 
 
Fig. 2.3 Controller 
 

 
 
Fig. 2.4 The plant and controller after interconnection 
 
 

3. Mathematical Models  
 
Control theory is an interdisciplinary branch of 
engineering and mathematics, which deals with influencing 
the behavior of dynamical systems. The desired output of a 
system is called the reference. When one or more output 
variables of a system need to follow a certain reference 
over time, a controller manipulates the inputs to a system 
to obtain the desired effect on the output of the system. So, 

we will focus on dynamical systems because of their 
obvious importance in control problems with behavioral 
equations and latent variables as the important supporting 
characters. Mathematical models are expressed by 
ordinary or partial differential equations, they may involve 
the language of graphs or lattice diagrams, or require the 
notion of a transfer function or a formal language.  
 
3.1 Universum and behaviour:  
 
Assume that given a phenomenon which we want to 
model. To start with, we cast the situation in the language 
of mathematics by assuming that the phenomenon 
produces elements in a set which we will call the 
universum. Elements of U will be called the outcomes of 
the phenomenon. Now, a (deterministic) mathematical 
model for the phenomenon (viewed purely from the 
behavioural, the black box point of view) claims that 
certain outcomes are possible, while others are not. Hence 
a model recognizes a certain subset B  of U . This subset 
will be called the behavior (of the model). Formally A 
mathematical model is a pair (U ,B ) with U  the 

universum its elements are called outcomes and B the 
behaviour. A mathematical model can be illustrated by the 
following interesting example. 
 
3.1.1 Example: During the ice age, shortly after 
Prometheus stole fire from the Gods, man realized that 
H2O could appear, depending on the temperature, as water, 
steam, or ice. It took awhile longer before this situation 
was captured in a mathematical model. The generally 
accepted model takes the following form: 
 U  = {ice, water, steam} × [ -273, ∞) 
 and 
B = ({ice} × [-273,0]) U ({water} × [0,100]) U 
({steam}× [ 100,∞ ) ). 
 
3.2 Behavioral Equations 
 
Let U  be a universum, E  an abstract set, called the 

equating spaces, and let 1 2, :f f →U E . Then the 

mathematical model (U ,B ) with 

{ }1 2: ( ) ( )u f u f u= ∈ =UB  is said to be described by 

behavioural equation(s), and will be denoted as 

(U ,E , 1 2,f f ) a behavioural equation representation. 

The best way of looking at the behavioral equations 

1 2( ) ( )f u f u=  is as equilibrium conditions:  the 

behaviour B  consists of those attributes for which two 
(sets of) quantities are in balance. 
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A few remarks are in order. First, in many applications 
models will be described by behavioural inequalities: 
simply take in the aforementioned definition Ito be an 
ordered space and consider the behavioural inequality 

1 2( ) ( )f u f u≤ . Many models in operations research 

(e.g., in linear programming) and in economics are of this 
nature. Second, every model can trivially be considered as 
coming from behavioural equations. Simply take E  to be 
any set containing 0 and let f  be any map from U  to E  

such that { }: ( ) 0u f u= ∈ =UB . Interesting 

representation questions occur when we want (1 2,f f  ) to 

have a concrete and appealing form or when we want the 
behavioural equations to be a set of equations, each 
allowing a natural and convincing interpretation, bringing 
into evidence such things as balance equations, 
conservation laws, simple constitutive laws, field 
equations, etc. Third, and most importantly, whereas 
equations uniquely specify the behaviour, the converse is 
obviously not true. Since we have a tendency to think of 
mathematical models in terms of equations, most models 
being presented in the form, it is important to emphasize 
their ancillary role: it is the behavior, the solution set of 
the behavioral equations, not the behavioral equations 
themselves, which is the essential result of a modeling 
procedure. 
 
Many other properties of mathematical models can be 
nicely cast in the framework presented, for example, 
linearity, linearization, symmetry, variational principles, 
etc. In particular, a mathematical model (U ,B ) is said to 
be linear if U  is a vector space and B is a linear 

subspace of U . 
 
Around 1960, the basic model for studying dynamics in 

control shifted from 
d d

p y q u
dt dt
   =   
   

 to 

( , , ),x f x u t=ɺ  ( , , )y h x u t= . This was a major step 

forward. Multivariable systems could be covered without 
difficulty. Nonlinearities and time-variation could at least 
be put in evidence. Classical models from mechanics were 
a special case. With modest adaptations, finite state 
machines and automata were part of the same picture. So 
were, to some extent, systems described by PDE’s. The 
input/state/output systems had much more modelling 
power and were far richer mathematically. By explicitly 
displaying its memory, the state, the model took into 
consideration initial conditions, something that transfer 
functions failed to do. The move to state space models 
constituted a true paradigm shift. The credit for this 
paradigm shift must go to scientists from the Soviet Union. 

Perhaps because physics, mechanics, and the calculus of 
variations were viewed as central, or perhaps because they 
were used to work with differential equations, but when 
Pontryagin cum suis started thinking about control, they 
chose ( , )x f x u=ɺ as the model for articulating 

optimality. 
 
In the late 1970s, Jan C. Willems [5] used a general ‘set-
theoretic’ level, and end up with a detailed treatment of the 
highly structured linear time-invariant systems. He 
frowned on starting with the equations 

,x Ax Bu y Cx Du= + = +ɺ  or even ( , ),x f x u=ɺ  

( , )y h x u=  with (A, B,C,D) such that G(ξ ) = D + C(Iξ 

− A) -1B. In this case there are actually many other ways of 
translating this module specification into dynamic 
equations. These were to be half-way points. Some 
reasoning should lead to the choice of u, y, and x.  
 
3.3 Dynamical Systems 
 
One of the fundamental tools of behavioural approach is 
dynamical systems as control theory deals with the 
behaviour of dynamical systems. Most dynamical systems 
are indeed described by behavioral equations. These are 
often differential or difference equations, sometimes 
integral equations. So, we will now apply the view of 
mathematical models in order to set up a language for 
dynamical systems. There have been many attempts to 
come up with a suitable axiomatic framework for the study 
of dynamical systems. In the study of dynamical systems, 
we are interested in situations where the events are maps 
from a set of time instances to a set of outcomes. The 
universum is then the collection of all maps from the set of 
independent variables to the set of dependent variables. In 
models of physical phenomena, it is customary to call the 
elements of the domain of a map independent variables 
and those of the codomain dependent variables. For 
dynamical systems, the independent variable is time, and 
the set of independent variables is therefore a subset of 
R . In [4] the spatially distributed systems described by 
partial differential equations (PDEs), which involve 
multiple independent variables, reflecting, for example, 
time and space is discussed extensively. But now, we 
discuss only dynamical systems where T  is a set of real 
numbers. The set of dependent variables W  is the set in 
which the outcomes of the signals being modeled take on 
their values. We call T  the time axis and W  the signal 
space.  Then a dynamical system is defined as a triple  
( ,T  W ,B ) in the following: 
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3.3.1 Definition: A dynamical system ∑  is given by  a 
triple ∑ = ( ,T  W ,B ) with ⊆T R  the time axis, W  

the signal space, and ⊆ T
WB  the behavior. Thus, a 

dynamical system is defined by T , the time instants of 
interest W , the space in which the time signals which the 

system produces take on their values, and B , a family of 

W -valued time trajectories. The sets T and W  define 

the setting, the mathematization of the problem, while B  
formalizes the laws which govern the system. According to 
the dynamical model ∑, time signals in B  can in 
principle occur, are compatible with the laws governing ∑, 
while those outside B  cannot occur, are prohibited. 
 
In applications, elements of B  are required to be well-

behaved maps from T  to W , at least measurable or 
locally integrable. In fact, when studying linear time-
invariant differential system, we often assume for 
convenience of exposition that the elements of B  are 

infinitely differentiable. The behavior B  is the central 
object in this definition. The behavior formalizes which 
trajectories w : T→W  are possible, according to the 
model. In the sequel, the terms “dynamical model,” 
“dynamical system,” and “behavior” are used as 
synonyms, since usually W and T follow from the context, 
leaving only B  as being specified by the model 
equations. 
 
As an example, consider the motion of a planet around the 
sun. For this example, the time axis is R  and the signal 
space is R 3, since we are interested in describing the 
position trajectories that the planet can trace out. Before 
these motions were understood, every trajectory w : 
R→R

3 could conceivably occur. 
 
3.4 Linear time-invariant differential systems 
 
We discuss the fundamentals of the theory of dynamical 
systems. We illustrate the use of the behavior to formulate 
system-theoretic concepts by means of two often used 
properties of dynamical systems, namely, linearity and 
time invariance. 
 
3.4.1 Linearity: The dynamical system ∑ = ( ,T  W ,B ) 

is linear if W  is a vector space and B  a linear subspace 

of T
W , that is, if w1, w2 ∈ B  implies αw1 + βw2 ∈ B  

for all scalars α, β. Linearity means that superposition and 
scaling hold.  
 

3.4.2 Time-invariant: The dynamical system ∑= 
( ,T  W ,B ) is time invariant if T  is closed under 

addition and σ tB  ⊆ B  for all t ∈ T , where σ t denotes 
the backward t-shift, defined by (σ t f )(t/) := f (t/ + t). Time 
invariance means that the shift of a legal trajectory is again 
legal. 
 
3.4.3 Differential: differential, meaning consists of the 
solutions of a system of differential equations. For some 
model classes, for example, for linear time invariant 
differential systems, there always exists a componentwise 
input/output partition of the system variables. Consider 
the differential equation, 

0R w+ 1

d
R w

dt
+

2

2 2

d
R w

dt
+………+

n

n n

d
R w

dt
 = 0, 

with 0 1 2, , ,....., nR R R R∈ �
R

g×w . 

Combined with the polynomial matrix,  

( ) 0=R Rξ + ( )1R ξ +………+ ( )n
nR ξ , where the real 

matrices R0, R1, . . . , Rn are the parameters of the model, 
and the differential equation specifies which time 
trajectories w : R→R w belong to the behavior. This is 
in the mercifully short notation can be written as, 

          
d

R w
dt
 
 
 

= 0. 

 
3.5 Controllability and Observability 
 
Another essential tools in behavioural model are 
controllability and observability. Controllability and 
observability are dual aspects of the same problem. The 
introduction of controllability is one of the milestones in 
the history of control. This notion played a seminal role in 
the early development of the state-space theory of 
dynamical systems. Since then, controllability features as a 
regularizing assumption in essentially every major 
theoretical development in the field. By now, 
controllability is one of the first things taught in 
introductory control courses. A state-space system is 
controllable if, for any two states, there is an input that 
drives the system from the first state to the second. 
 
A good overview of the early history of controllability is 
given in the lecture notes [15] by Rudy Kalman. After 
discussing the state-space notions of controllability, 
observability, and minimal state representation, it is stated 
that 
 
´Only much later did it become clear, however, that a 
dynamical system is always controllable if it is derived 
from an external description’ [15, p. 136].  
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The traditional definition of controllability emerged  at the 
Modern Theory of Control and refers to the ca - pational 
system, controlled, be able to transfer  state between any 2 
points.  In other words, a  system is controllable if, for any 
two states, ex - istira a control system that transfers the 
first es - wards the second in finite time. The 
controllability,  defined in this classic format, presents 
some drawback. From the outset, the controllability 
assumes that the  system is arranged in the form input / 
state, which  requires the selection of the early states of the 
model. Additionally, the situation of uncontrollability may  
be clearer if this factor is due to the mistaken choice  states 
or if the variables manipulated by the controller  no 
influence on the total system.  For this reason, the pro -  
ownership of controllability refers only to repre -  tion of 
states of the model and may not be generalizable  for the 
overall system [4]. 

A system is said to be observable if, for any possible 
sequence of state and control vectors, the current state can 
be determined in finite time using only the outputs (this 
definition is slanted towards the state space 
representation). Less formally, this means that from the 
system's outputs it is possible to determine the behaviour 
of the entire system. If a system is not observable, this 
means the current values of some of its states cannot be 
determined through output sensors: this implies that their 
value is unknown to the controller and, consequently, that 
it will be unable to fulfil the control specifications referred 
to these outputs. 

For time-invariant linear systems in the state space 
representation, a convenient test to check if a system is 
observable exists. Consider a SISO system with n states, if 
the rank of the following observability matrix 

 

is equal to n, then the system is observable. The rationale 
for this test is that if n rows are linearly independent, then 
each of the n states is viewable through linear 
combinations of the output variables y(k).  

 

4. Recent Developments 
 
In the last few decades tremendous achievements have 
been occurred in the behavioural models in systems and 

control theory. In addition to Jan C. Willems, several 
authors have made a significant contribution in the 
aforesaid field. Belur and Trentelman [3] studied the 
control by interconnection in a behavioral framework. In 
particular, for linear differential systems with two types of 
variables, to-be-controlled variables and control variables, 
they established the necessary and sufficient conditions for 
regular implementability of a given sub-behavior of the 
manifest plant behavior. They formulated the pole 
placement problem and the stabilization problem as 
problems of finding suitable, regularly implementable sub-
behaviors. These formulations were completely 
representation-free. Using the characterization of regular 
implementability, they obtained necessary and sufficient 
conditions for pole placement and stabilization. Again, 
these conditions were expressed in terms of properties of 
the plant behavior itself, and not as properties of a 
particular representation of it. As an illustration, They 
studied the case that the plant is given in an input–state–
output representation. They proved that the controlled 
behaviors obtained in the pole placement problem and the 
stabilization problem can, in fact, be implemented by 
means of (singular) feedback. In fact, if for the plant to be 
controlled an actuator–sensor structure is specified in 
advance, then a feedback controller can be found that 
respects this actuator–sensor structure. Finally, we have 
established the connection between freedom of 
disturbances in the controlled system, and regularity of 
interconnections. In a minicourse on behavioral systems 
theory [11], Rapisarda and Willems (2006) presented an 
effective algebraic representation of bilinear and quadratic 
functional of the system variables and their derivatives. 
Working with functionals at most natural level, two-
variables polynomial representation; operations/properties 
in time domain; algebraic operations; differentiation, 
integration, positivity; Lyapunov theory, dissipativity, 
model reduction by balancing. Rapisarda in [12] has 
developed the concepts of bilinear- and quadratic 
differential forms used in modeling the control problems 
which are functional of the system variables and their 
derivatives arising in optimal control and in the theory of 
Lagrangian or Hamiltonian mechanics as well as in 
Lyapunov stability theory and also showed a couple of 
applications to system- and control theory problems such 
as the modelling of linear Hamiltonian systems, and an 
equipartition of energy principle. In 2007. Kojima et. al. 
defined [9] the canonical representative for the 
equivalence class consisting of all polynomial- and 
quadratic differential operators that take the same values 
on a given subspace of C. One of the significant 
contributors in the area of behavioural modeling in 
systems and control is P. Rocha. Several achievements 
have already by P. Rocha specially in the Quaternionic 
behaviours, Periodic behaviours and 2D behaviours [13]. 
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The Control of multidimensional nD behaviors are also 
proposed in [14]. She investigated the three types of 
stabilizability  defined for nD systems within the 
behavioural framework, namely trajectory stabilizability, 
set-controllability to a stable behaviour and stabilizability 
by interconnection and proved that stabilizability by 
interconnection is the strongest than the others. Researches 
are going on for the further achievements in the aforesaid 
fields of systems and control. 
 

4. Concluding Remarks 
 
The field of systems and control has come a long way in 
the last 50 years. The mathematical methods used have 
expanded enormously. The techniques that have been 
developed for trajectory transfer, stabilization, disturbance 
attenuation, observers, adaptation, and robustness are deep 
and relevant. The modeling ideas ranging from state space 
systems to model reduction and uncertainty modeling are 
rich and versatile. The paradigm of open systems, 
combined with interconnection, make it into an area that 
fits modern technological developments well, even though 
systems and control has benefited less from the explosion 
of numerically driven and microprocessor or internet based 
applications than some neighboring areas, as signal 
processing, communication, and optimization. 
 
In this paper, we have outlined the basic concepts 
underlying the dynamical systems framework which have 
been developed over the last few years. The fundamental 
ideas center around the notions of the behavior of a 
dynamical system, of behavioral equations, typically, 
difference or differential equations specifying the behavior 
(in a many-to-one way), and finally, latent variables which 
will almost always be present in models obtained from first 
principles. State variables may be viewed as an especially 
important class of latent variables. The framework 
presented provides an appealing and natural setting in 
which many classical concepts and problems attain new 
meaning and content: linearity, time invariance, 
controllability, observability, etc. It also leads to a 
multitude of representation questions, in particular input-
output, state, and inputstate/output representation 
problems. Underlying these representation questions there 
are invariably parametrization problems. For the class of 
systems studied here these are typically polynomial matrix 
or matrix parametrizations. 
 
We have extensively investigated the origin of behavioral 
approaches in the systems and control applied in many 
engineering devices. We have also studied the recent 
developments in behavioral theory and also the framework 
presented here is especially well suited for treating 
questions of modeling, for example system identification 

and model approximation problems. We hope this study in 
the behavioral theory will open a new horizon the near 
future. 
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